翻訳と辞書
Words near each other
・ Wii (video game series)
・ Wii Balance Board
・ Wii Chess
・ Wii Fit
・ Wii Fit Plus
・ Wii Fit U
・ Wignacourt
・ Wignacourt Aqueduct
・ Wignacourt Tower
・ Wignacourt towers
・ Wignall
・ Wignall Nunataks
・ Wignall Peak
・ Wignehies
・ Wigner crystal
Wigner D-matrix
・ Wigner distribution
・ Wigner distribution function
・ Wigner effect
・ Wigner lattice
・ Wigner Medal
・ Wigner quasiprobability distribution
・ Wigner semicircle distribution
・ Wigner's classification
・ Wigner's friend
・ Wigner's theorem
・ Wigner–d'Espagnat inequality
・ Wigner–Eckart theorem
・ Wigner–Seitz cell
・ Wigner–Seitz radius


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Wigner D-matrix : ウィキペディア英語版
Wigner D-matrix
The Wigner D-matrix is a matrix in an irreducible representation of the groups SU(2) and SO(3). The complex conjugate of the D-matrix is an eigenfunction of the Hamiltonian of spherical and symmetric rigid rotors. The matrix was introduced in 1927 by Eugene Wigner.
== Definition of the Wigner D-matrix ==
Let ''Jx'', ''Jy'', ''Jz'' be generators of the Lie algebra of SU(2) and SO(3). In quantum mechanics these
three operators are the components of a vector operator known as ''angular momentum''. Examples
are the angular momentum of an electron
in an atom, electronic spin, and the angular momentum
of a rigid rotor. In all cases the three operators satisfy the following commutation relations,
: () = i J_z,\quad () = i J_y,\quad () = i J_x,
where ''i'' is the purely imaginary number and Planck's constant \hbar has been put equal to one. The operator
: J^2 = J_x^2 + J_y^2 + J_z^2
is a Casimir operator of SU(2) (or SO(3) as the case may be).
It may be diagonalized together with J_z (the choice of this operator
is a convention), which commutes with J^ 2. That is, it can be shown that there is a complete set of kets with
: J^2 |jm\rangle = j(j+1) |jm\rangle,\quad J_z |jm\rangle = m |jm\rangle,

where ''j'' = 0, 1/2, 1, 3/2, 2,... and ''m'' = -j, -j + 1,..., ''j''. For SO(3) the ''quantum number'' ''j'' is integer.
A rotation operator can be written as
: \mathcal(\alpha,\beta,\gamma) = e^e^e^,

where ''α'', ''β'', ''γ'' are Euler angles (characterized by the keywords: z-y-z convention, right-handed frame, right-hand screw rule, active interpretation).
The Wigner D-matrix is a square matrix of dimension 2''j'' + 1 with general element
: D^j_(\alpha,\beta,\gamma) \equiv
\langle jm' | \mathcal(\alpha,\beta,\gamma)| jm \rangle =
e^ d^j_(\beta)e^.

The matrix with general element
:
d^j_(\beta)= \langle jm' |e^ | jm \rangle

is known as Wigner's (small) d-matrix.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Wigner D-matrix」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.